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TEMPORAL ASYNCHRONICITY MODELING BY PRODUCT HMMS FOR AUDIO-VISUAL
SPEECH RECOGNITION

Satoshi Nakamura

ATR Spoken Language Translation Research Laboratories
satoshi.nakamura @ atr.co.jp

ABSTRACT [1, 4]. This scheme assumes complete asynchronization between
the audio and visual features. In addition, it can make the best use

There have been higher demands recently for Automatic Speech of the audio and visual data because there is a smaller bi-modal
Recognition (ASR) systems able to operate robustly in acousti- database than the typical database for audio only. However, the
cally noisy environments. This paper proposes a method to ef- audio and visual features are regarded as independent. In this pa-
fectively integrate audio and visual information in audio-visual per, in order to model the synchronization between audio and vi-
(bi-modal) ASR systems. Such integration inevitably necessitates sual features, we propose pseudo-biphone product HMMs which
modeling of the synchronization and asynchronization of the au- realizes state synchronous audio-visual integration. The proposed
dio and visual information. To address the time lag and correla- model can represent synchronicity not only within a phoneme but
tion problems in individual features between speech and lip move- also beyond phoneme boundaries. Furthermore, we propose a new
ments, we introduce a type of integrated HMM modeling of audio- method based on GPD algorithm to optimize stream weights of the
visual information based on a family of a product HMM. The pro- proposed pseudo-biphone product HMMs.
posed model can represent state synchronicity not only within a
phoneme but also between phonemes. Furthermore, we also pro-
pose a rapid stream weight optimization based on GPD algorithm 2. AUDIO-VISUAL INTEGRATION BASED ON
for noisy bi-modal speech recognition. Evaluation experiments PRODUCT HMM

show that the proposed method improves the recognition accu-
racy for noisy speech. In SNR=OdB our proposed method attained Figure 1 shows the outline of the acoustic model training for ASR
16% higher performance compared to a product HMMs without systems in this paper. Figure 2 shows the proposed HMM topol-the synchronicity re-estimation. ogy. First, in order to create the audio and visual phoneme HMMs

independently, audio features and visual features are extracted from
audio data and visual data, respectively. In general, the frame rate

1. INTRODUCTION of audio features is higher than that of visual features. Accord-
ingly, the extracted visual features are incorporated such that the

The performance of ASR systems has been drastically improved audio and visual features have the same frame rate. Second, the au-
recently. However, it is well known that the performance can be se- dio and visual features are modeled individually into two HMMs
riously degraded in acoustically noisy environments. Audio-visual by the EM algorithm. Finally, an audio-visual phoneme HMM
ASR [1, 2, 4] systems offer the possibility of improving the con- is composed as the product of these two HMMs based on HMM
ventional speech recognition performance by incorporating visual composition. The output probability at state ij of the audio-visual
information, since the speech recognition performance is always HMM is,
degraded in acoustically noisy environments whereas visual infor-
mation is not. bij(Ot) = bA(oA)A x (1)

Audio and visual phonetic features haiie different durations.
In other words, there is loose synchronicity between them, for in- which is defined as the product of the output probabilities of the au-
stance, a speaker opens the mouth before making an utterance, dio and visual streams. Here, l4A(OA)QA is the output probability
and closes it after making the utterance. Furthermore, the time
lag between the movement of the mouth and the voice might be
dependent on the speaker or context.

As audio-visual integration methods for ASR systems, early
integration and late integration are well known [ 1, 2]. In the early
integration scheme, a conventional HMM is trained using audio- HMM composition
visual data. This method, however, cannot sufficiently represent
the loose synchronization between the audio and visual informa- Training

tion. Furthermore, the visual features of the conventional HMM
may end up relatively poorly trained because of mis-alignments
during the model estimation caused by the segmentation of the au-
dio features. In the late integration scheme, the audio data and vi- Fig. 1. Procedure Overview
sual data are processed separately to build two independent HMMs
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Composed H/1MM Figure 3 shows results comparing audio HMMs. visual HMMs,
early integration, late integration, and product HMMs with and

3 31 32 33 without re-estimation [3]. The experimental conditions are the
-------- ----- . same as those in a later section except that the audio HMMs are

2 21 22 23 P, N, P ., ,! trained using clean speech data. The figure shows that the product
12) HMMs with re-estimation achieve the best performance, while the

11 12 . 13 product HMMs without re-estimation are worse than those of the
early and late integration schemes.

2.2. State Synchronous Modeling Beyond The Phoneme Bound-
ary

Visual HMM The second problem is that the conventional product HMMs force
a strict synchronization on every phoneme boundary. This is be-
cause the speech organs normally move earlier than the speech to

Fig. 2. Product HMM be produced. Sometimes, the speech organs are already articulated
in the previous audio phoneme utterance. Accordingly, we have to
consider state synchronous modeling beyond the phoneme bound-
ary. We have carried out preliminary experiments using audio-

of the audio feature vector at time instance t in state i, by (Ot)V visual word HMMs and confirmed that synchronicity is not always
is the output probability of the visual feature vector at time in- kept on a phoneme boundary looking at the optimal paths[5].
stance t in state j, and aA and av are the audio stream weight and We propose new product HMMs that include extra asynchronous
visual stream weight, respectively. In a similar manner, the transi- states on phoneme boundaries as indicated in Fig. 4. The core
tion probability from state ij to state k1 in the audio-visual HMM states of the phoneme HMMs are the same as those of context in-
is defined as follows. dependent phoneme product HMMs. In addition, the new product

HMMs have two extra HMM states aiming to work similarly to
= P X Pvj. (2) the word HMMs. The first extra state is composed of the initial

where PG,k is the transition probability from state i to state k in audio state and final visual state of the preceding phoneme HMM.

the audio HMM, and p,,,, is the transition probability from state j The second extra state is composed of the initial visual state and

to state I in the visual HMM. This composition is performed for all final audio state of the preceding phoneme HMM. Since these ex-

phonemes. In the method proposed by [4], a similar composition tra states are dependent on the preceding phoneme, they can only

is used for the audio and visual HMMs. However, because the be re-estimated in a manner similar to the biphone HMMs. There-

audio and visual HMMs are trained individually, the dependencies fore, we call these HMM pseudo-biphone product HMMs. The

between the audio and visual features are ignored. This results in proposed HMMs can tolerate one state asynchronicity beyond a

the following two problems. phoneme boundary.

1. The product HMMs can not represent the loose synchronic- 3. STREAM WEIGHT OPTIMIZATION
ity within phonemes as it is.

2. The product HMMs force a strict synchronization on every As methods for estimating stream weights, maximum likelihood
phoneme boundary. [6] based methods or GPD (Generalized Probabilistic Descent)[7]

based methods have been proposed. However, the former meth-
This paper proposes a new approach to solve the two prob- ods have a serious estimation drawback because the scales of two

lems. The approach proposes re-estimation of the product HMMs probability are normally very different and so the weights can not
parameters by using a small amount of audio-visual synchronous be estimated optimally. The latter methods have substantial pos-
adaptation data, and pseudo-biphone product HMMs which repre- sibility for optimizing the weights. However, a serious problem
sent loose state synchronicity beyond the phoneme boundary. is that these methods require a lot of adaptation data is necessary

2.1. State Synchronous Modeling within a Phoneme

The first problem is from the inability of the conventional product
HMMs to represent loose state synchronicity within a phoneme. 7 -1WEI

This problem is caused by the fact that the transition probabilities 15,0,
and output probabilities are obtained by the multiplication of prob-
abilities from independent states of audio and visual HMMs. We 40

propose new product HMMs whose parameters are re-estimated
using audio-visual synchronous adaptation data [3]. The re-estimation

is able to introduce the loose state synchronicity of the states of two
modalities into the product HMM. The re-estimation procedure is 0.1 0.2 oý3 04 0.5 0.6 0.7 0.8 0.9

carried out using a small amount of audio-visual synchronous data. Audi,, St-rm Weigh,

After the composition of two HMMs, the product HMMs can be
re-estimated based on the Baum-Welch algorithm for multi-stream Fig. 3. Results of Product HMMs
HMMs.
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A ,4. EVALUATION EXPERIMENTS
phoneme core

--------............. The audio signal is sampled at 12 kHz (down-sampled) and ana-
lyzed with a frame length of 32 msec every 8 msec. The audio fea-
"tures are 16-dimensional MFCC and 16-dimensional delta MFCC.

I- On the other hand, the visual image signal is sampled at 30 Hz with
256 gray scale levels from ROB. Then, the image level and loca-

--------------- ----------- tion are normalized by a histogram and template matching. Next,
the normalized images are analyzed by two-dimensional FF1' to
extract 6x6 log power 2-D spectra for audio-visual ASR. Finally,

phoneme 35-dimensional 2D log power spectra and their delta features are
boundary state extracted. For each modality, the basic coefficients and the delta

-------- icoefficients are collectively merged into one stream. Since the
frame rate of the video images is 1/30, we insert the same im-
ages so as to synchronize the face image frame rate to the audio
speech frame rate. For the HMMs, we use a two-mixture Gaussian

,/y/ distribution and assign three states for the audio stream and two
Visual 1AM] Visual states for the visual stream in the late integration HMMs and the

Fig. 4. Pseudo-biphone product HMMs baseline product HMMs. In this research, we perform word recog-
nition evaluations using a bi-modal database [1]. We use 4740
words for HMM training and two sets of 200 words for testing.
These 200 words are different from the words used in the training.

for the weight estimation. In this paper, we propose a GPD-based We perform experiments using 15, 25, and 50 words. The con-

simplified adaptive estimation of stream weights using GMMs for text of the data for the adaptation differs from that of the test data.
new noisy acoustic conditions. In order to examine in more detail the estimation accuracy in the

The approach by the GPD training defines a misclassification case of less adaptation data, we carry out recognition experiments

measure, which provides distance information concerning the cor- using three sets of data, each as different as possible from the con-

rect class and all other competing classes. The misclassification text. The size of the vocabulary in the dictionary is 500 words
measure is formulated as a smoothed loss function. This loss func- during the recognition of the adaptation data. The GPD algorithm
tion is minimized by the GPD algorithm. Here, let L(x) (A) be the convergence pattern is known to greatly depend on the choice of
log-likelihood score in recognizing input data x for adaptation us- parameters. Accordingly, we set N = 1 in (3), N = 0.1 in (4),
ing the correct word model, where A = {AA- Av}. N = 100/k, and the maximum the iteration count = 8.

In a similar way, let Lx) (A) be the score in recognizing data We compared the processed product HMMs without re-estimation
x using the n-th best candidate among the mistaken word models. (Product-HMM(W/O Re-est.)), the proposed product HMMs with

The misclassification measure is defined as, re-estimation (Product-HMM(W Re-est.)), the proposed pseudo-

N biphone product HMMs without re-estimation (Pseudo-Biphon(W/O

P) ~L (x) (A) ± log[' I expJL(x)(A)}]W (3) Re-est.)), the proposed pseudo-biphone product HMMs with re-
N n= e ( estimation (Pseudo-Biphon(W Re-est.)), and GMM for GPD-based

stream weight optimization for acoustic SNR=I5, 0, and -5dB.
where sm is a positive number, and N is the total number of candi- White noise was used to reduce the acoustic SNR in this exper-
dates. The smoothed loss function for each data is defined as, iment. The audio HMMs were trained using the SNR=I 5dB data.

1() = [1 + exp{-cad(x)(A)}]- (4) The results indicate that the re-estimation of the product HMMs is
quite effective to improve the performance. The re-estimation is

where c is a positive number. In order to stabilize the gradient, the able to introduce the loose state synchronicity of the states of two
loss function for the entire data is defined as, modalities into the product HMMs. The state synchronous mod-

X eling beyond the phoneme boundary by a pseudo-biphone prod-
1(A) = E (x) (A) (5) uct HMM also results in significant improvements to the product

x=1 HMMs. It is also confirmed that the re-estimation further im-

where X is the total amount of data. The minimization of the proves performance of pseudo-biphone product HMMs. The fig-
loss function expressed by equation (5) is directly linked to the ures show optimal stream weights for the maximum performance
minimization of the error. The GPD algorithm adjusts the stream vary according to each method and acoustic SNR. The solid ar-
weights recursively according to, rows show the results by simplified GPD-based stream weight es-

-kEkVl(A), ktimation using 25 adaptation words. The proposed GPD-based
Ak+ Ak -- k = 1, . (6) simplified stream weight optimization algorithm successfully es-

where Ek > 0, -k= Ek = 00. Z-,k= k < co, and E is a unit timated stream weight with almost the best performance. In the
matrix. SNR=-5dB environment, the estimated weight is not the optimal

In this paper, we propose to use GMMs instead of HMMs to one. Figure 8 shows standard deviation of the word accuracy over
find optimal stream weights not for the recognition. GPD training various SNRs, a number of adaptation words, and a number of can-
on GMMs is quite simple and requires smaller amount of training didates in GPD training. It is confirmed the standard deviation in
data. We use 18 mixture Gaussians for GMMs and train them SNR=-5dB is bigger than the others and smaller number of adap-
using all of the training data. tation words gives bigger standard deviations. In SNR=OdB our
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proposed method attained 16% higher performance compared to a laboratively. This research was supported in part by the Telecom-

product HMMs without the synchronicity re-estimation. munications Advancement Organization of Japan.
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